"AD-A130 512 A STABLE ADAPTIVE NUMERICAL SCHEME FOR' HYPERBOLIC
CONSERVATION LAWS{U) WISCONSIN UNIV-MADISON MATHEMATICS
RESEARCH CENTER B J LUCIER MAY 83 MRC-TSR-2517

UNCLASSIFIED DAAG29-80-C-0041 F/G 12/1

o
o s &
™

[l
Ji2s s pis

oo

o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

TYRGS © S¥va~r e e Y e

FOR HYPERBOLIC CONSERVATION LAWS

Bradley J. Lucier

Mathematics Research Center
University of Wisconsin—Madison

610 Walnut Street
Madison, Wisconsin 53706

May 1983

(Received April 5, 1983)

P FILE COPY

Sponsored by

U. S. Army Research Office
P. O. Box 12211

Research Triangle Park
North Carolina 27709

MRC Technical Summary Report #2517

N

Pt

m A STABLE ADAPTIVE NUMERICAL SCHEME
-

AN

=i

<

(e

<C

TR Y o I M e ik WS S A 3

Approved for public release
Distribution unlimited

National Science Foundation
Washington, DC 20550

88 07 29 NEKq

UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

A STABLE ADAPTIVE NUMERICAL SCHEME FOR HYPERBOLIC
CONSERVATION LAWS

*
Bradley J. Lucier

Technical Summary Report #2517
May 1983

ABSTRACT

A new adaptive finite-difference scheme for scalar hyperbolic conserva-
tion laws is introduced. A key aspect of the method is a new automatic mesh
selection algorithm for problems with shocks. We show that the scheme is
Ll—stable in the sense of Kuznetsov, and that it generates convergent
approximations for linear problems. Numerical evidence is presented that
indicates that if an error of size ¢ is required, our scheme takes at most
0(e-3) operations. Standard monotone difference schemes can take up to

0(2-4) calculations for the same problems.

AMS (MOS) subject Classification: 65M10, 35165
Key Words: Conservation laws, finite-d ' .ference schemes, adaptive
numerical methods.

Work Unit Number 3 - Numerical Analysis and Scientific Computing

*
Division of Mathematical Sciences, Purdue University, W. Lafayette, IN 47907.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work partially supported by the National Science
Foundation under Grant No. MCS-7927062, Mod. 1.

.I
- !/*

SIGNIFICANCE AND EXPLANATION

s

| Certain problems in gas dynamics, oil reservoir simulation and other
fields can be modeled by hyperbolic conservation laws, a class of partial
differential equations. The solutions of such problems are typically made
up of smooth surfaces separated by discontinuities, or shocks. Usually,
less information is needed to specify the solution in the smooth regions

than in the shock regionsT

In this paper :; ;At;;duce&a stable finite-difference scheme for con-
servation laws that incorporates a time-varying, nonuniform computational
mesh. At any given time, 1;;é:mesh selection algorithm chooses a mesh based

on the approximation calculated up to the time. The algorithm uses know-
ledge of a solution's structure to reduce the number of meshpoints in the

regions where the solution is smooth. This reduces the method's computa-
v;)_ i

tional complexity while maintaining full accuracy. wé;prove&that our

method is stable for the complete nonlinear problem, and that it converges

Gyt E e

.
for linear problems. -We give examples where owr method is asymptotically

faster than previous ones.

Accession For

NTIS GRAZI g
DTIC TAB

Unannounced]
Justification

By.
Distribution/ B
Availability Codes
Avail and/or
Dist Special

A

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.

S e et 1 i ORI e e e

A Stable Adaptive Numerical Scheme for Hyperbolic
Conservation Laws

*
) Bradley J. Lucier

1. Introduction.

Our focus in this paper is the eflicient solution of the hyperbolic conserva-

tion law

w+f(u); =0, zeR t>0, (C)
u(z,0) = ug(z).
We use an adaptive finite-difference scheme that takes advantage of the struc-

ture of the solution of (C) to reduce its computational complexity. We consider
the scalar case u(z,t)cR For the general nonlinear problem. we offer numeri-
cal evidence that there is asymptotic improvement in the rate of decrease in
the error as a function of computational complexity. For linear problems we
prove that a version of our method converges if the initial data is sufficiently

smooth.

Our method is, generally speaking, a viscosity method. The class of mono-
tone finite-difference schemes for conservation laws are also viscosity methods.
Monotone schemes have been analyzed by Harten et al [12], Crandall and Majda
(5], Kuznetsov [15], Sanders (18], and Lucier [18]. These schemes converge to
the entropy weak solution of the conservation law (C), as formulated by Kruzkov
[14). Kuznetsov provided a gencral theory of approximation for approximate

solutions of (). He used this theory Lo provide error csiimales for monotone

- ‘
. Division of Mathematical Sciences, Purdue University, W. Lafayette, IN ?
47907. |

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based upon work partially supported by the National
Science Poundation under Grant No. MCS-7927062, Mod. 1.

e e —

-2-

difference methods for problems in arbitrary space dimensions using uniform
grids and local difference operators. His techniques were used by Sanders and
by Lucier to provide error estimates for difference schemes with nonuniform
meshes and nonlocal difference operators respectively. Sanders’ paper provides

a lucid treatment of Kuznetsov’'s theory.

One of the‘ considerations in developing our algorithm was that it must exhi-
bit nonlinear stability properties similar to those of monotone finite-difference
schemes. Our approach may be conceptualized as follows. We take a uniform
mesh in [a,b]x[0,7] with a mesh spacing of At. Meshpoints are removed from
the mesh where they are not needed to achieve the required accuracy. A stan-
dard finite-difference operator is used to advance the approximate solution from
one timestep to the next. (Special techniques are used when the meshes differ
from one timestep to the next.) Our method differs from previous ones in the
algorithm for choosing the mesh, the interpretation of the approximate solution,

and our specific choice of finite-difference operator.

Other adaptive methods have been devised for evolution equations. Davis
and Flaherty's algorithm [8] for the solution of evolution equations is designed
to solve smooth problems without shocks. They use an L? analysis to choose
their mesh and to provide an error analysis for some problems. Our algorithm is
similar to theirs, in that it tries to equidistribute a measure of the error among
the meshpoints. However, we use an ! analysis, since the solutions of (C) are

stable in L!, but not L2

Other general algorithms for evolution equations were proposed by Miller
[17] and Dupont [9]. Dupont supplies convergence analyses for his methods.
These algorithms are mainly finite element algorithms that converge well for

solutions that are stable in L2 Since the solutions of (C) are stablc in L! it is not

immediately clear whether such algorilluns are useful for approxiniating (C).

gy e 1

o R

N

-3
Gannon [11] introduced an adaptive finite-element method for parabolic
differential equations based on theory for elliptic equations.
Our algorithm was also motivated by the work of Sanders [19], Douglas [7].
’ and Douglas and Wheeler [8] on monotone finite-difference schemes with nonuni- ¢
form grids. Sanders and Douglas provide convergence results for such methods

with a fixed grid, while Sanders gives an error estimate of O((h + At)¥), where h

is the largest meshsize and At is the timestep. Douglas and Wheeler introduce
» an algorithm that uses grids that may change from one timestep to the next, a
true adaptive mesh method. They prove that the solutions of their algorithm
converge to the entropy solution of the conservation law. They do not provide an

error estimate. We compare their method with ours in the final section.

When Sanders, Douglas, and Douglas and Wheeler considered a nonuniform
mesh, they interpreted their numerical solutions as piecewise constant in z, and

they used a conservalive finite-difference operator that is, in genecral, incon-

© e e ——

' sistent everywhere. As a consequence, max(z; —2;-,)/ A must be bounded to
achieve stability in time in [8]. Since our method can have arbitrarily large spa- !

tial increments, depending on the smoothness of the solution and the nonlinear- 5‘

ity of f. we made a different choice. Our method interprets the soluiion of the
numerical problem as a piecewise linear function, Lo take advantage of at least
some smoothness in the solution. We also use a conuistent, but nonconservative,
difference scheme. (Because of the details of the scheme, it is still conservative
near shocks.) Section 4 contains partial results that bound the mass error in a

reasonable way.

Adaptive numerical methods for hyperbolic conscrvation laws have previ- E
ously been considered by Oliger [18] and his students. Hcedstrow and Rodrigue

(18] is a survey of some of the techniques that arc used. Bolstad [2] presculs a

framnework for methods in one space dimension. lis schemes incorporale

-4 -
locally varying, recursively deflned, space and time increments. He uses
Richardson extrapolation to estimate the local truncation error of the finite-
difference scheme. The estimated truncation error determines the local grid
size. Berger [1] extends Bolstad's work to two dimensions. Among other things,
she deals with the strictly two-dimensional problems of shock capturing. subgrid

orientation, and overlapping grids.

The stability analyses in these papers are L? analyses, and their motivation
seems to be the accurate approximation of smooth solutions of systems of linear
conservation laws. Our motivation is the solution of nonlinear problems with
shocks, and, in dealing first with the scalar equation, we use a L' analysis.
Instead of finding a general framework for the such methods, we use a specific

finite-difference operator and mesh selection criteria.

Oliger and his students employ locally varying timesteps as well as spatial
mesh increments; we do not. We could have used locally timesteps. but we were
not able to prove stability and convergence results for these methods. Since
asymptotic improvement in convergence rates can be exhibited with fixed
(small) timesteps, local timesteps were not used. When locally varying

limesteps are used, our algorithm's implementation is very close to Bolstad's.

The rest of the paper is as follows. Notation and preliminary results com-
plete this section. Section 2 briefly describes the finite-difference operator used
here. Section 3 presents the mesh selection algorithm, and proves certain use-
ful properties about the resulting mesh. Section 4 contains proofs of the non-
linear stability of the algorithm. Section 5 shows that a variant of our methods
converges for solutions of linear problems. Section 6 details our implementa-

tion of Lhe algorithm, und Section 7 describes our computational results.

The LV seminorm of a function u is defined as |u|pym= f ju'(z)|dz,
R

where the integrand is interpreted as a finite measure. The set of all such

T TSI by T 2fhe T eyt s

-5-
functions is denoted by BV(R). It u is in BV(R), then there exist two bounded

functions, u* and ©~ such that u =u*+u~ and u* is nondecreasing., «~ is nonin-

A creasing. We define u! =u*—wu", the total variation function of «.

= Throughout the paper we assume the normalization that ||f}||zp=<1. This
can always be achieved with a change of the time scale, and is used only for con-

venience in stating stability conditions.

2. The Finitedifference Scheme.

We use a standard upwind-difference scheme to advance the approximate
solution from time £™ to t™*!. We are given a suitable mesh, chosen by the rules
in the next section, to represent the solution at time £™. It is characterized by

the meshpoints zP* and the values of the approximate solution Ul at those mesh-

points. We interpret these points as determining a continuous piecewise linear
approximation to u(z,t™). A estimate of the solution at time £™*! is calculated

by
OEF-Up |, £HUD) =L W) | £TUR) =D _
At hp hly
5 d
i for all ! (except the two endpoints of the interval). We have decomposed f into

(2.1)

its increasing (f*) and decreasing (f~) parts. If f is monotone increasing or
decreasing then this method is an upwind difference method. A similar scheme

has been used by Engquist and Osher[10].

The linear intcrpolant of the values UP*! at the points zP is a function we

call u—; The mesh selection algorithm of the next section, when applied to 1;,._

gives us a new mesh z3**! and function .alues UP*! for the approximate solution

of (C) at time £™*!,

This process is repeated until ¢**i= T,

3. The Mesh Selection Algorithm.

This section describes our mesh selection algorithm. In our implementa-
tion, the mesh at time ¢™*! is built from the mesh at time £™, but the method of
approximation is general and applies to any function with reference to a time-

stepping procedure. We present the algorithm here in its general form.

Our method of mesh selection is similar to well known ones for adaptive
linear approximation[3). The mesh approximately equidistributes an estimate of
part of the error incurred by the finite difference scheme, thus following
methods used in static problems [4] and other evolution equations[6]. The
method presented here was designed for problems with shocks, while previous
methods were designed for possibly nonlinear problems with smooth solutions.

The problems in [8] succumbed to an L? analysis, while the conservation
laws that are the target of this method are stable only in L!. The mesh selec-
tion algorithm therefore chooses a mesh that is “right’' for L!. Our specific
choice of the mesh will allow us to prove the stability results of section 4, an
important goal.

Let u be any bounded function defined on [a,bd that is constant outside of
[a,b], and let & be a small parameter. Choose the mesh according to the follow-

ing algorithm:

ALCORITHM M: This algorithm chooses meshpoints at which to approximate an

arbitrary function u defined on [a.b].

1. The meshpoints consist only of the points a and b and the centers of admis-

sible intervals. Admissible intervals are defined by (2) and (3) below.
2. Theinterval [a,b] is an admissible interval.

3. For any admissible interval /, lel 3/={z ldist(z,[)=nc1ll‘|x~y |<)if}. I |7 |=e
"

and

-7

lll,!l'luu |+ 1S "(u)|usPdz 2 e, (8.1)

then the left and right halves of / are admissible intervals. The above
integral is finite if ¥, is a finite measure; it is to be interpreted as « other-
wise. Note that 3/ is an open interval.

When this algorithm is used for our adaptive method, Aft=¢/4, so that

At=min(zl -2z{,).

A minimal interval is an admissible interval that contains no proper admis-
sible subintervals. It is clear that the width of any given admissible interval is
27*(b-a) for some nonnegative k. Also, |/|=¢&/2. It follows that the mesh is a

subset of

Se={a+m2*(b-a)|m=0,1, - 2* and(b-a)2*2e/4>(b—a)27* Y
Some lemmas about the structure of the mesh gencrated by this algorithm fol-
low.

Leuma 3.1. If A and B are two adjacent minimal intervals, then

1.<..L§..L<z
27 |lB| —

Proof. We let |B|>2|A]|, and derive a contradiction. Since the width of
any admissible interval is (b~a)2~* for some k=0, |B|=4]A4|. Consider now
the admissible interval from which A was derived by Step 3, and cali it C. Since
C was divided into two admissible subintervals, the integral in Step 3 is greater
than €. However, (7|22 |C| and 3CCc3B, so that the corresponding integral for

B must also be greater that ¢, a contradiction to the minimality of B.

777/

Except for the two points @ and b, the set of meshpoints has the natural

structure of a {re~. The peint (a+b)/ R is Lthe root of Lhe tree. You can also think

of the interval {a,»' as ie root of the tree. (Since there is a one-to-one

I
E{
X
‘.

- 8 -
correspondence between the meshpoints and the set .f admissible intervals, we
will describe the structure of the mesh equivalently in terms of intervals or
meshpoints.) If an interval / is divided into two admissible subintervals by Step
3, then these two intervals are the left and right children of /, and / is their
parent. A meshpoint with no children (Lthe center of a minimal interval) is a
leaf.

LENNA 3.2. Every second meshpoint is a leaf.

Proof. The statement of the lemma is true after Step 2, and it is left invari-

ant by Step 3.

77/

This implies the obvious result that there is a unique covering of [a.b] with

minimal intervals.
LeEmMA 3.3. If the set of meshpoints is [z¢] with hy=z; -2, =20, then
1/2<hy/ My, <2

Proof. It z; is a leaf, then Ay =hyyy. If 2, and z;,; are leaves, then the

resuit follows from Lemnma 3.1.
/777

The linear interpolant 1, of u is defined by requiring that u.(z;) = u(z) for
all z;, and that u, be a linear function between the meshpoints so that u, is con-
tinuous on [a,b). The function u, has the following approximation properties
(et. [3)).

LEMMA 3.4.

&
|l _uc”[,l([“_b]) = Elb —a| +l a.l”u —u:”Ll(l) (3.2)

Froof. It I=(zy_y,Z¢4,) is minimal and |/|=¢ then Step 3 implies that

|1|j'|u,, |dz <& The L'(I) error [or linear interpolation at the points z_,. z;,
1

and z;,, is bounded by

L/]? 1]

Summi&ig over all / gives the first term in the expression. The second term con-

tains all the intervals not yet considered.
77/
There are two interesting cases when the second term is known to be small.
LEnMa 3.5.

(a) If u is a continuous, piecewise linear function such that u, is discon-

tinuous only at the points in S,, then the second term in (3.2) is zero.

(b} If u is in BV(R) then the second term in (3.2) can be bounded by

1/2|lullpyme. (Here we assume, wilhout loss of generality, that

)
zth |
|

u(z):}tizxgz—lh—[hu(t)dt forallz.)

Proof. }
(a) Since u is linear on each half of the minimal intervals / with [/]| <, .
4, =u on these intervals.

(b) 1t is an exercise to show that ||“c“'”-“p(1)5 1/ 2¢|luilpyy)- Since u is in

BY(R), we may add these individual bounds to obtain the lemma.

/777

A few other stability properties will be used in the sequel.

b

Lensia 3.8, |lwcllpyia.op =2 llpv(a.n). and eellyagq oy =12 lipagq)
Proof. 1t is clear thal linear interpolulion has these propcrlies.

r7/

2 A S TD g M5

e 4

-10-

4. Stability Properties.

The numerical method presented here has several stability properties that
mimic those for conservation laws. In brief, solutions of the numerical method
satisfy a maximum principle, are total variation diminishing, and are stable in
time. Although the numerical scheme i{s not conservative, one can bound the

mass error for most problems.

Boundary effects will be analyzed in the following way. Outside of [a,b] the
mesh will be extended so that all the mesh intervals to the left of a are of the
same width as the mesh interval immediately to the right of a, denoted by hg. A
similar extension will be made to the right of b. We assume that the function UP
is constant to the right and to the left of [a,b]. The mapping from Ul to UPr*!is
now divided into three parts: the finite-difference scheme (2.1) transforms U on
the extended mesh to U?*-‘ the values at the points @ and b are reset to their
original values; and the remeshing procedure, applied to the mesh values in
(a,b], yields Ul

For the method to work properly, some criteria is needed to decide when a
shock or other disturbance is gelling too close Lo the boundary of the interval.
Throughout, we will assume that the minimal intervals adjacent to the boundary
peints 2 and b have diameters greater than ¢. This is a simple and effective cri-

teria. If this criteria is in danger of being violated, the interval [a.b] is to be

enlarged.
We will follow the development of [8] for many of our proofs.
The following simple lcmma will have important applications.
LEMMA 4.1. [fgis f* f~or j}, and u is the linear interpolani of lie poinis

(z, UP) then

-11-

L £Y)
y(Ua;)—y(U"‘)_y(UI‘)-a(UI‘-;) sf|u,,|+|f"(U)1ugad-'l-'- (4.1)

P W 4

Note that this is multiple of the quantity that we use as a subdivision criteria.

Proof. Since g has a bounded, piecewise continuous second derivative,

g(UR) = g (UP +hpa 9 () =D L an 2 g (u(z)) dr .

hlev)
Now, g'(u) is bounded by 1, and for z€(zl.z0%;). g (u)s =g "(u)uf, since uy =0.
Also, |g”| is either |f"]| or 0. The previous equation and a similar one for

g (U,) can be rearranged and summed to yield

glUh) -g(UF) _g(UN)-g(UT) | f

= - |ugg | + |1 "(w)| ulde.
*1 h (o1 2%y

Here we have expressed the difference of the left and right derivatives of u at z

as the integral of the second derivative ‘‘delta’ measure.
777

The sharper bound

JHUB) LMD LR - L HUR) H 2 (UB) =S (UD) 27U =f (U)
41 ht hl hl

s [lug|+|f@)|ufde, (4.2)
&y 2ly)

may be derived by noting that f = f*+f -, and if the first or second derivative of
f *(u(z)) is nonzero at z, then the first and second derivatives of f ~(u(z)) are

zero there.
THEOREM 4.1. For all n >0, sup Ups sup Ud.
Froof. By Equation (2.1),

SHUY -2 UR,) | LUk =1 (U]

upt! = Up-At

h i sy]

-12-
Since f* is increasing, f ~ is decreasing, {{f*llip =1, and A¢/A*< 1, the preced-
ing equation yields

FHUD) = f UV UPYV UR) | [(U2 Y UPY U = f ~(UT)]
i hi's\

UPtl<s UP-At
S UP+ HUR VUMV UL -7 UD)
< UV UV Uy
Therefore, the finite-difference scheme satisfles a maximum principle. Reset-
ting the values of U at @ and b does not violate a maximum principle. Lemma
3.6 states that the subsequent transformation to U™*! satisfies a maximum prin-
ciple.
/777
THEOREM 4.2. For all n>0, “U"“Byms “UOH.DV(R) a

Proof. It welet 8f =74 (UM)—-f*(Ur,). then |

3f 8fh . 8/ _5fi-]

G- G = v - - e S-S .i

Because f* and f - are monotone, f*=f*—~f", ([f¢liip =1 and At/ Al'S 1, we can

take absolute values, and sum:

SITT- 0 | = lup- vty - A py - p om0+ aeg |1 2050 4 L0
1 3 R ral R 1

=2‘:|U¢"—U¢"_,I.

Thus the mapping U™ U™ is total variation diminishing. Resetting the values at

the endpoints does not increase the total variation. Since the remeshing pro-

cess is variation diminishing, by Lemma 3.6, the theoreln is proved.

Epogetas gy

’7/

g T

TUEOREM 4.3. U™ = U™ || g 5y = (37 RUU lpyim + (b —a)/ B)AL + 24t e, : ~

3

-13-

Proof. First, since the mesh is graded,

"U—T;T" U‘"Ll([“.]) s At? | 5:'_;1—- ut| (Lw—tzlrﬂ')_

A
| he _ ,
| = ZERIrH D - (u)) - ~

< 2Rl -1 ORI+ 2 4 1 (00) - D1+)

3At
s SIUevmy.-

When the boundary values are restored, we commit an error at the left end-
point of at most Af |U? - U%|. Under the assumption that the width of the
minimal interval adjacent to a is bigger than ¢, Step 3 of the mesh construction
allows us to bound the error by Ate.

: Finally, we may apply Lemmas 3.4 and 3.5 to yield
U™t = UP 1|41 oy S (0 —2) AL/ B.
/777
Because a consistent but nonconservative scheme is used for the time stepping,

there will, in general, be some mass balance error. This error can be bounded

; by the following theorem. 7
THEOREK 4.4. Assume [a.b]=(yS; U Ry where m -1 disjoint regions R, are §
J i

made up of minimal intervals of width less that ¢, and are surrounded by m

regions S; that are covered by minimal intervals whose width is greater than ¢.

Assume that there are no more than k minimal intervals in US;. Then
J

I{W— U™ dz - At(f (u(a))~f (u(b)))| < At (ke + (2me || U |pym)® (4.3)

Proof. Using the notation of Theorem 4.2, we have

K‘;-{'u"“(z)_-u"(z)dz

! -14-
' R P O £ 'k""'hul\
z(n ¥ hlsy X 2)
= Lo s +£ @) -0 wlo) + S W]- SOEAs + L)

HS (@) -1 () - g*‘h Eafm

We will show that the first sum minus 1/2(f *(u(a)) -7 *(u(d))) can be bounded
as in the statement of the theorem.

Pick a particular S; with left and right endpoints z; and z, and consider the
sum

& §rt
Y i, (4.4)
p=z hi

Since every minimal interval contained in S; is more than ¢ wide, Step 3 of Algo-

rithm M and Lemma 3.5 show that (4.4) is equal to

i 4 Trs
5 M, 8f & 8 ym vp= 2‘5f‘ ne
’Il_" h{‘f1 ’Hl h‘{‘

where | M| is less than & (r -1 +1).

Any interval R; consists of minimal intervals of width less than ¢. Perforce,
all the intervals must have the same width. Thus, if z; and z, are the left and

right boundaries of Ry,

st 8f¢ st 8¢
2 —,‘_’H"n = 2 ,.
=244 A =214y W
Matching these results gives
5r ar
LTS L Y OIS BT TS (4.5)
v A ol 5y =(x.%,)

Here, |M|<2ke, since |JS; is covered by & minimal inteivals. The remark fol-

lowing Lemma 4.1 implics that the same bound holds when the terins incorporat-

ing f~ are also included. The first sum on the right of (4.H) is cqual Lo

-15-
IHu(d) =1 *(u(a)).

fn-l afl* -
- ——| =K, for some positive X;.
hisy hp

For the interval S;, assume |

frﬂ

Then, without loss of generality, we may assume that A ——2 _ZL Lemma 4.1
+1

6 +
8cn L,y zpes;.

and Step 3 of the mesh construction imply that | ——— m
+l

Also, hi*=>¢/ 2 for zP€S;. Therefore,

/2
IO amsy = ¢/2 5 (5/2-4)

2 cKkf/8.

Thus, the last sum in (4.5) is bounded by
e/2YVK; s (Rem e/ BY KM
J J
s (2em ||f *(U™)||sym)¥

Since ||f *(U™)llgym + If “(U™)|lpvim < [|U™ || pvimy. the theorem is proved.

77/

It can be shown that, for piecewise smooth functions, Algorithm M generates
fewer than Ke* meshpoints, for some K (cf. de Boor{3]). If this bound is
assumed throughout the calculation of u,, Theorem 4.4 bounds the mass error
at a fixed time T by a multiple of £% or At¥. The expected rate of convergence of

the method is O(At¥).

Unfortunately, we have not been able to calculate an a priori bound on the
number of meshpoints in a mesh generated by Algorithm M. If the function u, is
rough enough, £~! meshpoints may be needed to approximate it. The numbers &
and m can be calculated during the course of ihe algorithm in a negligible

amount of computer time, however, and (4.3) may be used as an a pustcriori

bound.

TV PR S TS SR <A G T o ARy (] -

oWy, N; imarigmn

e,

-18-

Theorem 4.4 does not consider the mass error generated by the adjustment
of the function values at the points @ and . Theorem 4.3 shows that this error

is O(At) if the minimal intervals next to a and b have width greater than &.

Estimate (4.3) does not include the mass error caused by the remeshing
process. Such an error occurs when admissible intervals in the mesh at time t*
are no longer needed, and do not appear in the mesh at time t**!. Lemma 3.4 is
sharp for any given time step; the mass error for a time step of size Af can be
comparable to At. Using this bound over the interval [0,T] gives an estimate of
an 0(1) mass error, a totally unacceptable resuit.

Computational experience with piecewise smooth solutions of the
differential equation has shown that over the interval [0,7] there is a constant C
such that fewer than C2* intervals of width 27*% (b -a) are removed from the
mesh in [0,7]. That is, a minimal interval is not subsumed into a larger minimal
interval for a period of time proportial to the its width. If this property holds, an
argument similar to that of Lemma 3.4 shows that the mass error due to mesh
changes on [0,T] is bounded by CAtlog(At™!) for some C. We therefore have the
following theorem.

THEOREM 4.5. For an interval [0,T], assume that there are constants C,, Ca,
and C3 such that for any £>0
(a) there are no more than C,e* minimal intervals of width bigger than ¢ for

any t® in [0,T],

(b) there are never more than C, disjoint regions covered by muudim. i inlervals
of width less than ¢, and

(c) at most C;2* admissible intervals of width (b~a)27* are removed from the
mesh in (0,T].

Then there eaists a canslant C, depending on C,, Cy, Cy, and |ju||pyg, such that

i
!
¢
i
E

AT S Tt op o W~

T TR o e S AT AT RSN A

4 e e ar ey e eras

—rr e e ey . e e -

-17-
the mass error of the numerical approzimation (2.1) can be bounded by CeX.

/777
The conditions (a), (b). and (c¢) can easily be checked a posteriori.

5. Convergence for Linear Problems.
In this section we prove that solutions of the linear problem

% +au, =0, z€eR t>0, (5.1)
u(z,0) = ug(z), z€R

are approximated well by variants of our adaptive mesh algorithm. If the initial

data is in BV(R), a posteriori bounds will be given on the error, and if the initial

du
data is slightly smoother, with -7"—°-€BV(R). a priori bounds are available. For-

mal justification of the mesh selection criteria used in Algorithm M is also given.
Consider first when ug€ BV(R). Our algorithm is as follows:

1. Pick £>0, and let u§ =Y, wuqg where Y.(z) is £71/2 when |z |s£2/2 and 0
otherwise.

2. Using u§ as the initial data, follow the algorithm in Section 2 to find u®.

This will be our approximation to u.

dué
It is easily shown that Il _dzlﬂpr(ns eV zlluollavm. and

oo =2 1S £ 2lhellavim:

The following theorem applies to such problems.

ThEOREM 5.1. If, af each timestep, there are never more than C,c~V 2 minimal
intervals of width greater than ¢; and if the total L'([a,b]) error due to mesh
changes is O(e"2), then

B 8) = w30 5 S et + 1)V 2 urollpyymy + 1) (5.2)

Furtherinore, the comprulational complexity of the schema is O(e~%/?)

T TN ot aree e e e P

-18-

Theorem 5.1 gives a posteriori estimates of the error and computational
complexity of the scheme. Our computational expgrience suggests that the con-
ditions of the theorem are always satisfied. We suspect that the structure of | i
solutions of the conservation laws ensures this. The computational bound is
better than for standard monotone methods; for these methods the error is

O(At'/2) but the complexity is O(At~%).

B T Y

The proof of this theorem relies on a number of lernmas.
Lewua 5.1. If u,€BV(R) and v is the linear interpolant of v on some mesh,

[z}, then v |lpyvm = |[u; llpvm-

E
Proof. Since vg(z)= ;—}——fu,(t)dt for z€(z;-1,2¢), the result follows
4

i S

immediately.

77/

Lewua 5.2. If U™ is generated by Algorithm M and (2.1), then

7 A i, 5 X7 -

Ul v = U2 vimy-

Up -~ U
Proof. Since (5.1) is linear, 1'= : e -1 satisfies the same difference

equation as UP. Hence ||[V**!pym<|V"|pym By the previous lemma,

[V* Y svm=<|V**'lipym. The result then follows by induction.

/777

Our analysis views upwind finite-difference schemes for conservation laws in

B T TR A i TP TR

a seemingly new way. In particular, if U} and UP*! are interpreted as piecewise i
linear functions, then the equation (2.1) defining UP*! is equivalent Lo Lhe follow-

ing algorithm:

£

To obtain UP*!, shift UP to the right by aA¢ (if a is positive) and interpolatc

the shilted function at the points z*.

o T A TR TR

PO i3 e, . oo

-19-
Note that error occurs only in the interpolation process; there is no error in the

values of the UP*! themselves if the values of the UP are exact. This calculation

is illustrated in Figure 1.

_ \\c_/Q'(« at) U

x‘.' xl' x"#l : x(v)_

Figure 1. The error caused by time-stepping.

Proof of Theorem ©5.1. We first define o(v)(z)=v(z-alt). If

en < |lu(nat)-a(U“-‘)“Ll([...]) +|lo(U™-Y) - U““Ll([.'.n
= |lo(u((n -1)At)) - o U‘_‘)“Ll([.'.]) +llo(Ur) -Um "Ll([..g])
=epqt an

where 38, is the local error [o(U™!)=UPyqs) We define

SUP=(UP - UM,)/ h{. Now, trom Figure 1,

TP = a(U™l e ppy = DAAAN(L = o’tsf YSUp-8U, | (5.3)
sp

s 2a8t® Y |SUP-SU, |
AP<en

+adt Y hP|oUr-80%, |
A2at

By using Lemmas 5.1 and 5.2, one can bound the (irst term by

CAtel|UlIarm s Ce" HliuollpymAt

o — m

-20-

Because of Step 3 of Algorithm M, and our assumption about the number of

intervals of width greater than ¢, the second term can be bounded by
adtexCe™V?%= Cel/ 2\t
Thus "U'H’l -0(Un)”Ll([.'”)s CAtsvz(”uO“BV(m + 1)'

Summing this expression over n=<t/At gives one term of (5.2). We have

assumed that ‘é‘IIU”” = U™y o= Cek. As stated previously,

lheo —u§ l|< €' Bl pymy- Lemmas 3.4 and 3.5 show that
||U°-u¢fHL,([¢M)5e(b ~a)/ 32 + 1/ 2¢|julipvim. The error bound is proved.

The complexity of the scheme is O(At~!N) where N is the maximum
number of meshpoints in any mesh {z]}, since the amount of work is linear in
the number of meshpoints. By hypothesis, there are fewer than Ce™/2 minimal

intervals of width greater than &. Furthermore, since f |uge | dz>1 if I <€, there
ar

must be fewer than 3||UFlpym = 3¢~ ?juollpym minimal intervals of width less
than €. Because every second meshpoint is the center of a minimal interval, the

theorem is proved.
77/

We now consider the <case when u is smoother. Let
L"*(R) = fue L'(R)NBV(R) | u; €BV(R)}.

We define here a modification of Algorithm M for functions in L!?(R).
Algorithm M’:
1. The points a and & are meshpoints. The center of every admissible interval

(to be defined below) is a meshpoint.

2. The interval [a,b] is an admissible interval.

3. If I is an admissible interval, |/|=4At, 3/ = {z | dist(x,/)< |/]}, and

(P TV MV - B ST S e

o,

e e hane

[,

-21-
111 1 > L0200 (e,

then the left and right halves of / are admissible intervals. As before, u, is
to be interpreted as a measure.

This new mesh algorithm makes the smallest admissible intervals the same

size as the “average" interval, i.e. when u, is bounded. Since u€L!?(R), the

very small spatial and temporal mesh increments of the previous method are

not needed. The following adaptive algorithm is therefore a true *“smooth solu-

tion'” algorithm.

(a)

(b)

Our new algorithm is as follows:

Given ug(z)., find z° 1sing Algorithm M’ and choose U? using piecewise
linear interpolation of ug.

For each timestep: Given meshpoints {z]} and function values { U{*} defined
at those meshpoints, calculate IFT using (2.1). (Equation (2.1) reduces to
the upwind differencing scheme in this case.) Interpreting ﬁ as a continu-

ous, piecewise linear function, use algorithm M’ to find a new mesh {z]'*!}

for UP*}, and define UP*! on that mesh by linear interpolation of UP*!.

The following result holds.

TheoreM 5.2. Let ugeL!'?(R) and u(z,t) be the solution of (5.1). If nAt=T,

and U™ is the solulion of the adaptive mesh algorithm above, then

"u(t) - U"”L;(["”) s3 (T + 1)At "uo'”BV(I)-

Proof As in Theorem 5.1,

I =g (U™l igq o= 22882 3 [BUP-8URy |+adt T hP|SUP-8UR, |
hj<zie hl=24¢

The first term is bounded by 2aAt?|ug'||pym becausc of Leminas 5.1 and b.2. By

using Step U of Algorithm M’, the second term can be bounded by

O S TR TR Y PRI H S AT e > i r

L, Y ey AT

o

ATy 0,) P TEEY < T "

e Rkt 0,

E’

-22.
aML(? M‘]W[NLE hp1SUD- 807, (3"
244 248
I
< alt(b -a)"'At(b—_”:)ﬂVg,—

< alt®lug'|| pym.
Thus (| U™ = 0(U™ |10 5y 3088 %l uc | Bvem-
Finally, let S be the set of all minimal intervals in the mesh at time ¢™*!
that are not minimal at time £™. Then, because of Lemma 3.4 and step 3 of Algo-
rithm M’, the expression for the error in the trapezoid rule yields

“U""l - U"””L‘([c.b]) = I§S JE'ZL_I(SUP-G Utp—l l

apel
2]
At¥|lug'llgvm '
<
3206 —a) !

At?,
< E‘Huo Bvim

Thus, 6, <3A¢3(lug’|lpym- After calculating the error caused by the approxima-

tion of ug, the theorem follows by induction.

/777

The same analysis can be used formally for nonlinear problems: estimate
the difference, now nonzero, between the values UP*! and Sy (U™)(z]), (Sa
advances the solution of (C) by time At¢) and then separately estimate the inter-

polation error as in Figure 1. The error in UP*! is bounded formally by

248
At [1S (U™ (zt7))z | dx + O(ALR). (5.4)
2l
The L! error on (z,.z},) is thercfore bounded by (Al+hf%,)/ 2 times (5.4),

bounded in turn by CAt times Lhe integral in (3.1).

Thus, if [|U}* lpvay= ClIURpy@an for cach minnual interval 7, the error

caused by the nonlincarity is of Lhe samc order as the crror causcd by the

-

-23-.

dissipation in the difference scheme. Thus, our mesh selection criteria achieves

a balance between errors caused by nonlinearity and dissipation.

8. Implementation Details.

Our scheme was implemented using the programming language Pascal. The
resulting programs were run on a VAX 11/780 with a floating point accelerator
under the VMS 2.5 operating system and Pascal 1.2 compiler, and under the
Berkeley Unix 4.1 operating system with its Pascal compiler. In this section, we
describe the algorithms and data structures used in our implementation. We
show th}at the integrals in (3.1) can be evaluated exactly. and hence that the sta-
bility results of the previous section hold without a separate theory describing
the eflects of numerical quadrature. We also estimate the computational com-

plexity of the scheme.

The following steps advance the approximate solution from one timestep to
the next. First, the finite-difference formula advances u, from " to t™*! on the
mesh {z]'}. Secondly, the integrals in (3.1) are calculated for the mesh {z}. In
our implementation, the integrals are first calculated over the (open) interval /
instead of 3/, and the integral over 3/ is constructed when it is needed. Finally,
the mesh {zP*!] is constructed. To do this, the union of the meshes {z*} and
{zl*} is built up by adding the appropriate meshpoints to {z}. The values of
the integrals (3.1) are derived for the new meshpoints as they are introduced. A

second pass is made to remove points in {z}} that are not needed in {z**}].

Except for the two meshpoints a and b, the mesh is naturally organized as
a binary ¢ree. This is because it is defined recursively by subdividing admissible
inlervals into two subintervals al cachi step. Bach admissible interval (or,
equivalently, the meshpoint at its center) is a mode in the tree. The interval
(a.b] is the root of the tree. If an admissible interval is subdivided into two

admissible subintervals, then these subintervals arc the left and right children

- 24 -
of the interval. A node without children is a leaf, and corresponds to a minimal
interval. Nodes that are not leaves are interior nodes. The parent of an interval

is the admissible interval from which it was derived.

We first describe the information stored in a node corresponding to a mesh-
point z? at the cenler of an interval / = (z;.x,). This information consists mainly
of pointer variables and numeric variables. A pointer variable either points to
the beginning of a block of computer store allocated to a node, or it is nil. A
pointer has the value nil when it points to ‘‘'nolhing”, i.e. it does not point to the
memory location of a node. For examplc, the pointer “parent’ would point to
the beginning of the information for the parent node of z®. (The parent pointer
of the root would be nil.) The pointer “left.child’’ would point to its left child,
etc. The numeric variables contain such information as the value U?, the value
of the integral (3.1) on the interval /, etc. Figure 2 contains the description of a

node.

The function f is an auxiliary function introduced to calculate the integral

(3.1) For all ¢€R. f'(£)= | £ "(£)]. it follows that

=iy

Uy - U~ by
JIUE+ 17 (UM (U ds = =Hm——(F (UB) = (UT). (6.1)
Ly

since UL is O for all ze€(zP} zl%,). For each minimal inlerval, use (8.1) to calcu-
lute righlantegral and left.integral; for cach interior node, lefl.uitegral and
right.integral are the values of this.integral for the left and right children of the
node. For any node, calculate this.intcgral by adding the differcnce of the left
and right derivatives of u at the meshpoint z! to the sum of left.in'egral and

right.integral.

In cach node we have included pointers and nuincerical variables whose

values can be calculated from already available information. lMor cxample, in

cach leafl node z we save A and At/ A These valucs are necded often in the

s

e o ol

Billicaaatuds -5 m

-25-
Node :
x {zf}
u {Url
isaleaf { true if this node is a leaf }
'+ i+
left.child, right.child { pointers to — 22' and = 22' if this node is not a

leaf |
parent { pointer to parent of this node }
isaleftchild { true if this node is a left chiid }
depth | distance, in nodes, from this node to the root node }
left.neighbor, right.ncighbor { pointers to z}*, and zf; }
left.boundary, right.boundary | pointers to z; and z, }

left.sibling, right.sibling { pointers to the nearest nodes at the same depth
as P, to the left and right, respectively, of z{' |
this.integral, left.intcgral, right.integral { the integral (3.1) over (z;.z,).
(z;.z"), and (z},z,). respectively }
U -0 U0, l

uxx { = P

left.ux, right.ux | if this node is a leaf,

U\?‘—Uiﬂ—l and UPH ‘UP }
R hin
fluxplus, luxminus, fuxbar { f*(U}). £ (UM, £ (UP) }
deltatoverh, hinverse, criticalvalue § At/ (zl*~z,), 1/ (z]'-z;), €/ (z,—%;) }

Figure 2. Definition of a node corrcsponding to z in the interval (z;.z,).

scheme, and change only when the mesh is changed. Our experience with the
scheme has shown that, on average, less than one node is added to or sub-
tracted from the mesh at each time step. Thus, using the saved values reduces
execution time significantly. Because a new mesh is constructed at each time
step, we also require that the structural information necessary to derive a new
mecsh be readily available at cach node. Again, extra slorage reduces execution
time. Since, for many problems, many {cwer nodes are necessary to obtain a
satisfactory error with this method than with standard first order methods, the
cxira slorage requircemients are not deeued critical.

The special nodes ¢ and b are the left and right boundarics of (a.b], the

rool node. In addition, supplemnental meshpoinls are added Lo the left and to

-26 -
the right of the interval [a.b] so that the pointers left.sibling and right.sibling
will not be nil for any node in the tree headed by[a,b]. The complete data struc-
ture is shown in Figure 3. The lines in Figure 3 illustrate only the children and

4 sibling relationships of the nodes.

AV

L.
»

<
i
T

=3

o
-
-’

-

oS

Figure 3. Sibling and child relationships for the mesh points.

Figure 4 presents the procecdure criferia that calculales the nodal valucs

needed to build the new mesh. On each invocation, crileria calculates Lthe nodal

ot e ok i e 1 ..

e e e e T T ——
. N

e i e Y b L it 251

-27-

parameters for all nodes in the subtree headed by p. Indirection is indicated by
a caret (~). The with statement means that all unqualified nodal variables belong
implicitly to the node to which the pointer *p" points. For example,
“right.neighbor~.left.ux" refers to p's right.neighbor’s lefl.ux. Euch time step,
the nodal values for a and b are calculated first, and then criteria(root) is

called. The following lemma outlines a proof that the procedure is correct.

procedure criteria(p: nodepointer);
begin
with p~ do begin
fluxbar := fbar(u);

if isaleaf then begin
left.ux := (u - left.neighbor~.u) * hinverse;
left.integral := abs(left.ux * (left.neighbor~.fluxbar - fluxbar));
right.ux := (right.neighbor~.u - u) * hinverse;
right.integral:= abs(right.ux ® (right.neighbor~ .fluxbar - fluxbar))
uxx := abs(left.ux - right.ux);

this.integral := left.integral + right.integral + uxx
end else begin { p does not point to a leat |

criteria(left.child);

criteria(right.child);

right.integral:= right.child~.this.integral,

left.integral := left.child~.this.integral;

uxx := abs(right.neighbor~ left.ux - left.neighbor~.right.ux);

this.integral := left.integral + right.integral + uxx
end { if isalcaf then ... clsc ... }
end { with p~ do ... }
end; { criteria }

Figure 4. Procedure for calculating the integral (3.1).

LEMMA 8.1. Criteria(p) calculates the values of right.integral, left.integral,
uzz, and this.integral for all nodes in the subtree headed by p. Furthermore,
criteria(p) calculates left.uz and right. uzx for all leaves in the subtree headed by
p.

Proof. First one shows that f (U{) is calculated for the left and righl boun-
dary points of p beforce criteria(p) is called. This is casily proved by noting Lhut

it is true initially for the root node, and that if it is true for p's parent, then il is

Ay e g

roeeey S

-28-

true for p. The proof of the lemma then follows by induction on the height of the

subtree headed by p.

77/

For each interval /, the integral (3.1) over 3/ will be used to test for two
things:
1 If I is a leaf and /=¢, to see whether left and right children of / should be

added to the set of meshpoints, according to the criteria of Step 3 of Algo-

rithm M.

2 It/ is not a leaf, to see whether the subtrees headed by the left and right

children of / are still needed in the mesh.

These tests are done on separate passes of the tree. In the first pass, points are
added to {z} to obtain {z]}U{zl*'}. In the second pass, points are removed
from the union to leave only {z}*!}. Since the set of points that are tested on
each pass are for the most part disjoint {only nodes with newly added children
are tested twice), this two pass algorithm does not add too much to the arith-

metic complexity of the scheme. A one pass algorithm could surely be devised.

An argument similar to to that in Lemma 3.1 shows that, in any mesh con-
structed using Algorithm M, a node's parent will always have adjacent left and
right siblings. If {zP} U{zl*"} is formed from {z{!} by adding meshpoints in order
of increasing depth, then this property also holds for all meshes intermediate to
{z]} and {zP}U{zlP*"}. Thus, we add nodes to the mesh in a depth first ordering,
and calculate (3.1) for an interval that is a left child, for example, by adding
p~.parent~.this.integral, p~.parcnt~ left.sibling~.right.integral, and
p~.lell.boundary~.uxx. Figure b illustrates the calculation. A similar expression

holds {or nodes Lhat are right children.

The above calculation is the reason that each admissible interval has a

-29.

p~.left.boundary

N - "parent
PA.Paren'I'“,leg'f.Slbfmj p.parenl)

{ P X ’
| 1 S I -l
t 31 —3

Figure 5. The calculation of the integral (3.1).

meshpoint at its center, and that the integral (3.1) is calculated over the left
and right half of each admissible interval.

The second pass of the algorithm checks each node with children to see if
the subtrees headed by that node's children are needed to approximate the
function U7*! well. If not, they subtrees are removed. The nodes are checked

for subtree removal in a depth first order.

Note that our algorithm removes unnecessary subtrees at once, instead of

removing one meshpoint at a time. In practice, however, we have not not

observed the removal of any but the trivial subtrees consisting of only one node.

We use a simple and eflicient memory management scheme. When a node is

no longer needed and is removed from the tree, it is appended to a free list of
nodes. When a aode is needed for addition to the tree, it is taken from the free
list if the list is not empty. If the free list is empty, a call Lo the operaling sys-

tem allocates enougrh storage for the new node.

The complexily of the scheme can be measured by countin’s the number of

floating point operations that are done, on average, for cach meshpoint 28 at

- -

-30-
each time t®. More operations are performed for leaf nodes than for interior
nodes. We assume that an evaluation of f*, f~, or f requires two additions (or
subtractions), two multiplications, and two comparisons. This would be the case,
for example, if these functions were deflned as piecewise quadratic functions
over four intervals. Qur assumptions yield
Complezity per meshpoint = 17 Additions + 9.5 Multiplications + 7 Comparisons.
This may be compared with a complexity estimate of 8 Additions, 4 Multiplica-
tions, and 4 Comparisons for a careful implementation of a uniform mesh algo-
rithm with the same spatial difference operator and At=h. If an arbitrary vari-
able spaced mesh is chosen every timestep, the standard algorithm will require
10 Additions, 5 Multiplications, 2 Divisions, and 4 Comparisons per meshpoint.
This does not include whatever calculations are necessary to choose the mesh.
Thus, the special placement of the meshpoints in our algorithm no more than

doubles the work per meshpoint.

Nonarithmetic operations must be included in any complexity estimate of
these algorithms. It is more difficult to quantify this nonarithmetic complexity.
what may be considered "‘overhead.’’ We give empirical results in Lhe next sec-
tion that show that the nonarithmetic overhead is the same for the fixed and

adaptive mesh algorithms.

A more serious difficulty in comparing the cflicicney of these algorit'yms is
that the fixed mesh algorithm converges at diflerent rates for differing fluxcs f.
We will find in the next seclion that for the problems for which the fixed mcesh
algorithm performs relatively well, the new algorithm compares poorly. The

problems for which the fixed mesh algorithm performs poorly, hewever, are

solved with surprising success by our algorillun.

+
¥
i
H

WA o Y

e R AP w1 7 AT A T AR

e

-31-

7. Computational Resuits.]
The Pascal implementation of our algorithm was run on two Digital Equip-
ment Corporation VAX 11/780 computers with floating point accelerators under
the VMS 2.5 and Berkeley Unix 4.1 BSD operating systems. Both programs use
double precision (64 bit) floating point numbers. We only nceded to change real

constants from double precision to single precision notation to move the pro-

gram from VMS to Unix; no other changes were needed.

We chose computational examples to highlight the strengths of our method
as well as point out directions for improvements. The biggest omission was of
problems with smooth solutions. (We did not implement the algorithm for
smooth solutions given in section 5.) It is easily shown that for monotone uni-
form grid methods, the work expended to achieve an accuracy of § at time T is
proportional to 32, When given a problem with a smooth solution, the present
implementation of our method will achieve the same accuracy, but will take
timest=ps that are much smaller than the average mesh spacing. In fact, the
work for our method will be proportional to 2. This shortcoming will be taken

up in a broader context later. We have compared the methods for problems with

shocks, contact discontinuities, and expansion waves following shocks. Thcse
comparisons lead us to believe that our method is superior to fixed mesh mono-
tone methods when the discontinuities in the solutions of (C) arc smecared

across more than a fixed number of mesh intervals by the monotone schemes.

In these examples, our method is compared with a f{inile diflcrence scheme

with a fixed, uniform, spatial grid. This scheme's difference operator is

Pt -UP U =SOSR SO
At h h |

Always At=h to avoid any divisions or imultiplications in this part of ithe algo-

rithm. A careful implementation of the comparison schetuc uses only two func-

L O L e T PR

-32.
tion evaluations, three subtractions, and one addition per meshpoint per
timestep.

For all examples but the sixth, f =0, so that each difference operator
reduces to the standard upwind-difference scheme. The initial values U8 were
chosen to interpolate the initial data ug at the points ih. The solution of the
fixed mesh method was interpreted as a piecewise linear function taking on the
values UP at the points (ih,nAt). The difference in L![a.b] between the approxi-
mate solution and the piecewise linear interpolant of the true solution u(z.t)

was recorded as the error of the both schemes.

Table 1 presents the fluxes f and the initial and final values of u« for the
computational experiments. Table 2 contains the errors and execution times,
respectively, corresponding to various values of Af. For the purposes of com-
paring the methods, the parameter §, a measure of the average mesh spacing
where the solution is smooth, is introduced. The parameter 8 has the value VAt
for the adaptive mesh method, and At for the fixed mesh method. Table 3 tabu-

lates an expression of the error as error = C time® and error = C4° for each test.

TABLE 3
ERROR DECAY RATES
Test Adaptive Mesh Fixed Mesh
1 e =.0271"8%0 o= 5085199 | e =,033£" 49 e =.4725690
2 e=,121¢t"%6 o= 419469 e =.057¢t 487 e =.770899!
3 g =.377t"%0 ¢ =10864612%00 | ¢ = 506t 499 ¢ =.2460995
4 e =.,179¢-319 o = 61501 e =.183¢~%3 e =.6436457
5 e =.082¢"%7 ¢ =.338599° e =.081¢"971 e =.59357%9
8 e=.091¢"381 p = 39751034 | o= 087t e = 85259
* See text.

The CPU times in Table 2 are the '‘user'’ times reported by the Unix operat-
ing system. The “system” tite, which mcasures the tiie spenl by the operat-
ing system o gervice the program, was not included. The sysiwem time varied

greally, depending on the system usage, so it was nol decemed a reliable mcas-

ure of the melhods' resource needs. The user Limes corresponded well with the

-33-
TABLE 1
FLUYX. INITIAL AND FINAL VALUES OF u (Z .).
[(u) _up(z) u(z.4)
2 lifzst 1ifz=<3
1| 1/4(u+uf 0ifz>1 itz>3
. ~1U1=zS2 | [, _2)/3 if2<sz <2+ VB |
0 otherwise ')
2-4|z-3| it |z-3|s1/2 |
3| 1/2u u(z+2.,4) 0 otherwise :
1itz<1 1itz<3 1
4| 1/2u Ditz>1 0if z>3 b
&
. 1itz=1 3
1-(1-u)® ituz1/2 1itz=<i _
5 [u? ifusi/2 [0 otherwise 1-(z-1)/8 i 152.5'9-4‘/2
0 otherwise 13
. . 1iftz=l
1-(1-u)® ifu=z1/2 | 1 ifz=<1 _
6 [—zu3+3u=-u/a itus1/2 [o otherwise 1-(z-1)/8 if 152 <9-4V2

t

0 otherwise iL

CPU times measured on the VMS operating system on a lightly loaded machine. ;
The error decay rates in Table 3 are based on a log-log least squares fitting of i
the data. They were calculated from the data in Table 2, but with the full accu- E
racy of the data, which is truncated in Table 2. i
Test 1 presents our method in the best light. This is a Riemann problem
with a strong nonlinearity keeping the shock width to within a few of the small
(O(At)) mesh intervals. At the same Lime, the solution is constant outside the
shock region, so only O(-log(At)) meshpoints are necessary to accurately

represent the solution. The result is «n error of O(At) with a computational

complexity of O(—Atlog(At)).

: ' Test 2 is perhaps the worst comparison between the fixed mesh and adap-

e serespry-e

tive mesh mecthods. The adaptive method gives no more than O(&%) accuracy 1n

the regivns where the solution is smooth. To do so, it uses O(e71#) wcshpoints.

e

* s s~

-34-

TABLE 2
COMPUTATIONAL RESULTS

m_—_—-——_—

[Test 1. Test 2.

— 1 Adaptivemesh | Fixedmesh | Adaptive mesh | Fixed mesh

2| 1.252-1 0.12 | 2.258-1 0.02 | 2.488-1 0.13 { 3.419-1 0.02

4 | 3.237-2 088 | 1.252-1 0.07 | 1.174-1 1.18 | 2.079-1 0.07 ‘
8 | £.093-3 525 | 8.456-2 0.27 | 5.449-2 888 | 1.119-1 0.28 :
16 | 2.023-3 28.33 | 3.237-2 1.07 | 3.189-2 58.85 | 6.276-2 1.07 H

32 | 5.058-4 132.65 | 1.818-2 4.37 | 1.771-R 383.15 | 2.852-2 4.48
64 | 1.264-4 626.68 | 8.093-3 17.65 | 9.547-3 2560.93 | 1.308-2 1722
128 | 3.161-5 2068.28 | 4.046-3 7125 | 5129-3 17678.77 | 6.782-3 69.95

3! Test 3. Test 4. 4
Adaptive mesh Fixed mesh Adaptive mesh | Fixed mesh §
21 8.727-1 0.12 | 1.118-0 0.02 | 3.611-1 0.10 | 4.560-1 0.02 >
4 | 4.010-1 1.22 | 8.627-1 0.056 | 1.904-1 0.88 | 3.4256-1 0.07 H
8 | 1.374-1 10.82 | 6.139-1 0.25 | 1.022-1 6.45 | 2.530-1 0.23
16 | 5.532-2 73.72 | 3.954-1 1.00 | 5.429-2 42.57 | 1.846-1 1.00

32 | 2.747-2 493.65 | 2.302-1 4.02 | 2.942-2 299.60 | 1.335-1 3.98]’
64 | 1.34B-2 3168.97 | 1.229-1 186.07 | 1.532-2 2235.78 | 9.592-2 16.00

128 | 8.091-3 20316.55 | 6.243-2 64.45 | 7.898-3 17124.27 | 6.860-2 64.40 g
8! Test 5. Test 8. ¥
Adaptive mesh Fixed mesh Adaptive mesh Fixed mesh
2 | 1.800-1 0.13 | 3.924-1 0.02 | 2.018-1 0.12 | 4.234-1 0.02 y
4 | 8.180-2 0.93 | 1.795-1 0.07 | 9.278-2 0.92 | 1.969-1 0.07
8 | 4.133-2 6.92 | 1.393-1 0.27 | 4.633-2 6.45 | 1.477-1 0.30
18 | 2.083-2 38.98 | 7.100-2 1.12) 2.174-2 41.32 | 7.632-2 1.18

32 | 1.042-2 238.97 | 5.131-2 4.45 | 1.069-2 253.40 | 5.345-2 4.68
64 | 5.390-3 1472.12 | 2.875-2 17.63 | 5.440-3 1694.37 | 2.983-2 18.87
128 | 2.718-3 9701.87 | 1.590-2 71.07 | 2.716-3 10267.05 | 1.644-2 _75.70

Coupled with a time step of O(t), we achicve a cowuplexity bound of 0(e™¥?), a
decidedly inferior result when compared with the fixed mesh. This predicament
strongly suggests a method where the local timesteps are proportional to the
local meshsize. Such methods have been used by Oliger [18], Bolstad [2], Berger :

1], and others (see references in [13]). With such a scheme, the error will still

be 0(e!/?), but the complexity of the scheme will be reduced to O(g). This is the
same relationship between error size and complexity thal applies for the fixed

mesh method, which does surprisingly well for this problem.
When applied Lo the third test problem, Lhe fixed mesh method behaves in a
different way when the meshsize is small than when it is large. This is because of

the large second derivatives in the solution. The tixed niesh method <hibils an

error of order At% wilth o decidedly less than one, when the meshsize is large

]

-35-
(greater than 1/32). When the mesh size is small, however, the mesh can ade-
quately refine the large gradients and the error is of order At. Because we are
mainly interested in exhibiting ‘‘asymptotic’ error rates, we have computed the
error for the fixed mesh method for At as small ay 1/ 1024, and our error decay

rates in Table 3 are derived from the smaller timesteps.

Test 4 was the problem that motivated the design of the adaptive method.
It corresponds to a contact discontinuity in gas dynamics. The discontinuity is
smeared over O(At~V%) intervals, and the fixed mesh method has an accuracy of
order At¥ The time complexity of the flxed mesh method is O(At~?), so the
error of the method is of order t~'“%, The adaptive method puts 0(At~"/2) inter-
vals of size At near the discontinuity, and the same number of size At 2 away
from the it. Thus, the complexity of this scheme is of order At™%2 and the
error is of order t~V3, In other words, if one wants an error of order ¢, it takes
order ¢* work for the fixed method, and order £~3 work for the adaptive

method.

The solutions of Tests 5 and 6 exhibit behavior similar to the solutions of the
Buckley-Leverett equation used as a model in petroleum reservoir simulation
(see Douglas and Wheeler [8]). These solutions consist of a shock followed by a
sinooth expansion wave. The shock is not as strong as in the first example. The
fixed mesh solution rcflects this, as the shock is smcared over several mesh
intervals, and an accuracy of order At¥4, instead of At, is observed. The tests
indicate that the relationship between complexity and error is the same for the
adaptive method and the fixed mesh method. Changing the adaptive method to
use locally varying timesteps as well as mesh spacing would decr e the CPU

titme greatly for Lthese probletns.

The resuits of Tests 1 through 8 suggest that our ncw metlhod is cficclive

when discontinuities in the solutions are smearcd across many mesh inlervals

e

-38 -
by the fixed mesh method. This happens in particular for problems that have

discontinuous solutions but weak nonlinear fluxes.

An alternate approach to developing an adaptive mesh method is presented
in [8]. There, the motivation is to use an implicil scheme with a large timestep
and to refine the mesh near roughness in the solution. Unfortunately, this stra-
tegy does not asymptotically decrease the error. Heuristically, this is because
one cannot drag a shock or discontinuity across many meshpoints in one
timestep without smearing the discontinuity. This effect is illustrated in Table 4
for two problems. Each problem has the solution u(z)=1/2 (1-sgn(zx~t/2)).
The fluxes are f(u)=1/2u and f(u)=1/4 (u +u?) respectively. Each prob-
lem was run with h, the mesh spacing, equal to A¢ and At? Thus, our choice is
not to adapt the mesh, but to use a uniformly fine mesh. By using a fine mesh
everywhere, our results do not depend on any particular mesh refinement algo-
rithm. For the first problem the error is of order At'/? for both choices of the
mesh. The error for the second method is of order At. Thus, it appears that
spatial mesh refinement, without a corresponding refinement of the temporal

increments, is not effective in solving these problems.

TABLE 4
ERrRrors UsING IMPLICIT METHOD
At Test 1. Test 2.
h = At? h = At h = At? h = At
0 500000 ' 7 8550e-01 9.5360c-01 | 5.1312e-01 §.76-8¢-01
0.250000 | 4.8564e-01 6.B264c-01 | 2.3904c-01 4.1525e-01
0.125000 | 3.1453c-01 4.8564¢c-01 | 1.0772e-01 2.3B33¢-01
0.062500 | 2.1129¢-01 3.4447¢-01 | 4.9128c-02 .27 -0
003250 @ 1.1H29c-01 2.4393e-01 | 2.3225¢-02 6.4 7900-02
0.0:5625 | 1.0124¢-01 1.7261e-01 | 1.1274e-02 3.2443e-02

In the previous section, we showed Lhat the arithniclic complesity of the
adaptive digorithiy was no tmore than lwice that of the tied peint algo-

vithun por aeshpomt per tunestep. The algorithms duer | coatly . there nuple-

necnidions, however. The fixed mesh alporithm is almost Lrivial Lo miplement,

e s

..,W..ﬂ,.‘___@_, o,

-97-
while the adaptive method uses sophisticated data structures and pointer mani-
pulation. We therefore set out to quantify the amount of nonarithmetic over-

head in each method.

We proposed to measure the proportion of the CPU time spent in arithmetic
computations as compared with nonarithmetic computations for both imple-
mentations. We had available two VAX's running identical software, one of which
did not have a floating peint accelerator (FPA). A simple program consisting
mainly of an equal number of nontrivial memory to register floating point addi-
tions and multiplications was run and timied on both machines. A speedup of a
factor of five was observed on the machine with the FPA. (The eflects of cache
memory hits was not considered.) We then compared the CPU times for the
same implementations of the two algorithms on both machines. The ratios of
the CPU times are given in Table 5. Assuming that only floating point operations
were speeded up by the FPA (a faulty assumption, for some integer arithmetic is
also faster), we calculated the fraction of time spent in nonarithmetic opera-
tions by both programs on both machines. For Test 8, with nontrivial f*, f~,
and j‘T , around 90% of the time was spent on nonarithmetic operations on the
machine with the FPA for both problems. The figure is similar for Test 4, with
trivial f*. 7. and .

To discover the effects of the Pascal compiler, we implemented the fixed
mesh algorithm in FORTRAN and ran this program on the machine with the FPA.
For somc reason, the FORTRAN compiler generated niuch superior code for
index calculations. Function calls were slightly cheaper because the FORTRAN
program, not being block structured, did not maintain a ‘“‘display™ of the
currently accesgsible data arcas. The compulation Lime of the FORTRAN program

was BU% of its Pascal counterpart. This still leaves us wilhh an overhcead figure of

about 87%. These Lests indicate that the overhead is sinilar, and large, for each

Gmasmian n e e

-38-
algorithm.

TABLE 5
NoNARITHMETIC OVERHEAD

Adaptive mesh ~ Fixed mesh i
Test | CPU time Overhead CPU time Overhead !
ratio FPA _ No I'PA ratio FPA__ No I'PA
0.728 917 86% 0.678 BB% 607
0.699 89% 63% 0.715 907% 647%

o W

B. REFERENCES.

—

M. Berger, ‘‘Adaptive mesh refinement for hyperbolic partial differential

I S cogtr Vi

equations,” Stanford Computer Science Report STAN-CS-82-924 (disserta-

-
.

tion).

e

2. J. H. Bolstad, "An adaptive finite difference method for hyperbolic systems
in one space dimension,"” Lawrence Berkeley Lab. LBL-13287 (STAN-CS-82-
899) (dissertation).
3. C. de Boor, *"Good approximation by splines with variable knots,"” in Spline
Junctions and approxrimation theory, A. Mcir and A. Sharma ed., ISNM v. 21,
Birkhauser Verlag, 1973, pp. 57-72.
4. C. de Boor, "Good approximation by splines with variable knots II,”” in Lec-
ture Notes in Mathematics 363, Springer Verlag, 1974, pp. 12-20. 1
5. M. G. Crandall & A. Majda, ‘"Monotone diflerence approximations for scalar
conservation laws,"" Math. Comp. v. 34, 1980, pp. 1-21.
8. S.F. Davis & J. E. Flaherty, ""An adaptive finite element method for inilial- i

value problems for partiu! diffcrential equations,” SIAM J. Sci. Stat. Com-

put., v. 3, 1982, pp. 6-28.

7. J. Douglas Jr., "Simulalion of a lincar walerflood,” in Free ioundury Frob-

lems, Proceedings of a scminar held in Pavia, Sept.-Oct. 1979, Vol. I, Insti-

10.

11.

12.

13.

11

18.

-39-

tuto Nazionale di Alta Matematica ‘‘Francesco Severi,'’ Roma, 1980.

J. Douglas Jr. & M. F. Wheeler, *'Implicit, time-dependent variable grid finite
difference methods for the approximation of a linear waterflood,” Math.

Comp., v. 40, 1983, pp. 107-122.

Todd Dupont, *'Mesh modification for evolution equations,” Math. Comp., v.
39, 1982, pp. 85-107.

B. Enquist & S. Osher, “Stable and entropy satisfying approximations for

transonic flow calculations,” Math. Comp., v. 34, 1980, pp. 45-75.

D. B. Gannon, "'Self adaptive methods for parabolic partial differential equa-

tions,” U. of Illinois CS Dept. report UIUCDCS-R-80-1020.

A Harten, J. M. Hyman & P. D. Lax, *‘On finite difference approximations and
entropy conditions for shocks,” Comm. Pure Appl. Math., v. 29, 1976, pp.
297-322.

G. W. Hedstrom & G. H. Rodrigue, "Adaptive-grid methods for time-
dependent partial differential equations,” in Multigrid Methods, W. Hack-

busch and U. Trottenberg, ed., Springer Verlag, 1982, pp. 474-484.

3. N. Kruzkov, "First order quasilincar equations with several space vari-
ables,” Math. USSR Sb., v. 10, 1970, pp. 217-243.

N. N. Kuznetsov, **On stable methods for solving non-linear first order par-
tial differential equations in the class of discontinuous functions,” in Tapics
in Numerical Analysis, John J. H. Miller, cd., Academic Press, New York,
1977, pp. 183-197.

B. J. Lucier, **On nonlocal monotone differcnce methods for scalar conserva-

tion laws,”’ to appear.

K. Miller, *'Moving finite clements, parts 11, SIAM J. Numer. Anal., v. 18,

1981, pp. 1019-1057.

e,

PO

Pt o

-40-

J. Oliger, “‘Approximate Methods for Atmospheric and Oceanographic Circu-

lation Problems.' in Lecture Notes in Physics 91, R. Glowinski and J. Lions,
ed., Springer Verlag, 1979, pp. 171-184.
R. Sanders, "On convergence of monotone finite difference schemes with

variable spatial differencing,’ Math. Comp., v. 40, 1983, pp. 91-106.

BJL/jvs

D R s e e

SECURITY CLASSIFICATION OF THIS PAGE (When Dets Entered)
REPORT DOCUMENTATION PAGE BEFORY. COMPLETING FORM
1. REPORT NUMBER GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
2517 h 4730 5/3—
4. TITLE (and Subtidle) $. TYPE OF REPORY & PERIOD COVERED
Summary Report - no specific :
A Stable Adaptive Numerical Scheme for reporting period h
Hyperbolic Conservation Laws S. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(®) 3. CONTRACY OR GRANT NUMBER(S) | '
MCS-7927062,
Bradley J. Lucier DR%&S;-BH&!C -%)041
3. PERFORMING ORGANIZATION NAME AND ADDRESS TPROGRAM ELEMENT. PROJECT, TASK |
Mathematics Research Center, University of Por;';;i‘t'm: rh
610 Walnut Street Wisconsin | yumerical Analysis and
| Madison, Wisconsin 53706
11. CONTROLLING OFPICE NAME AND ADDRESS 12. REPORT DATE
May 1983
See Item 18 below 1. uuuzu OF PAGES
0
"TT. MONITORING AGENCY NAME & ADDRESS(I{ difforant from Cantrolling Office) | 13. SECURITY CLASS. (of thie repert)
UNCLASSIFIED
e, DECL ASHFICATION/ GOWNGRADING |
scHEDULE

Llc. "DISTRISUTION STATEMENT (of this Repert)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abeirast entered in Block 20, if different frem Report)

8. SUPPLEMENTARY NOTES ;
U. S. Army Research Office National Science Foundation

P. O. Box 12211 Washington, DC 20550
Research Triangle Park
North Carolina 27709

19. KEY WORDS (Continve on olde it y and ¢ ity by bleck mmmber)

Conservation laws, finite-difference schemes, adaptive numerical methods.

20. ABSTRACT (Centinue en eolde U 'y and identify by block number)

A new adaptive finite-difference scheme for scalar byperholic conservation
laws is introduced. A key aspect of the method is a new automatic mesh
selection algorithm for problems with shocks. We show that the scheme is L -
stable in the sense of Kuznetsov, and that it generates convergent approximations
for linear problems. Numerical evidence is presented that indicates that if an
error of size ¢ is required, our scheme takes at most 0(5'3) operations.
Standard monotone difference schemes can take up to 0(e~%) calculations for the .
same problems.

DD ,%'3s 1473 zoimion oF 1 Nov 6315 onsoLETR UNCLASSIFIED ,

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

;
1
l
:
i

